2. Digital Optical Systems based on Coherent and Direct Detection

Optical Communication Systems and Networks
BIBLIOGRAPHY

- Fiber-Optic Communications Systems

- Optical Fiber Communications. Principles and Practice
Modulation formats

Optical carrier: \(E(t) = A_0 \cos(\omega_0 t - \phi_0) \hat{e} \)

- **Amplitude modulation** \(A_0 \): **ASK**, Amplitude-shift keying
- **Phase modulation** \(\phi_0 \): **PSK**, Phase-shift keying
- **Frequency modulation** \(\omega_0 \): **FSK**, Frequency-shift keying
- **Polarization modulation** \(\hat{e} \): **PoSK**, information coded by polarization state (not allowed in optical systems based on fiber)

- Most commercial systems are based on ASK (These systems are also known as on–off keying, OOK) → **IM/DD** (intensity modulation and Direct Detection)
- First Differential PSK (DPSK) are being deployed recently
Direct Detection

ELECTRICAL RECEPTION

- **Antenna**
 - $E(t) = f(t)\cos(\omega t)$

 - Electrical receiver

 - Amplifiers (& filter/s)

 - $i(t) = CE(t) \propto f(t)$

OPTICAL RECEPTION

- **Optical receiver**
 - Lens (Focusing /collimation)

 - $E(t) = f(t)\cos(\omega t)$

 - $i(t) = C|E(t)|^2 = CP(t) \propto f^2(t)$

 - Amplifier (& filter/s)
Photodetectors

Thermal

Variation of radiation makes a change of temperature ΔT (bolometers). They are slow for communication applications.

Vacuum devices

As the *photomultiplier tubes*, which have high sensitivity but require high voltages, are expensive, slow and large. They also have difficulty operating at $\lambda > 1 \, \mu m$.

Semiconductors

Incident radiation causes variation of carriers, which in turn causes the modification of the conductivity of the material. They have low sensitivity.

Photoconductors

Incident radiation causes variation of carriers, which in turn causes the modification of the conductivity of the material. They have low sensitivity.

fotodiodes

Best option in Optical Communications
Coherent Systems

ADVANTAGES:

- Coherent detection can provide a potential improvement up to 20 dB in the receiver sensitivity unlike direct-detection-based systems
 - For a given power budget, this would allow to increase the total length of an optical link (or spacing between repeaters/ amplifiers)
 - Higher transmission rates over existing optical links without reducing repeater spacing is achieved

- Efficient use of the available bandwidth
 - Allows to transmit simultaneously several carriers (frequency multiplexing)
 - Channel spacing can be reduced to 1 - 10 GHz.
 - In IM/DD systems, 100 GHz – channel spacing has been proposed. Latest recommendations (G.694.1) include 50, 25 and 12.5 GHz versions

DISADVANTAGES:

- Receivers become more complex
- Sensitivity to the optical carrier’s phase and frequency degradation in reception
Diagram of a Coherent Detection System

- Received optical signal (modulated)
- Beam combiner
- Detector
- Electronic driver
- Local oscillator
- CW
- Electrical bit sequence
Coherent Systems

- The optical carrier carries modulated/coded information (phase and/or frequency)

- **At receiver:** coherent mixing between the incoming signal and optical wave generated by a stable and reduced spectral width local oscillator.

 Incoming signal: \(E_s = A_s \exp \left[- j(\omega_0 t + \phi_s) \right] \)

 Local oscillator: \(E_{OL} = A_{LO} \exp \left[- j(\omega_{LO} t + \phi_{LO}) \right] \)

- Assuming perfect optical mixing, and recalling than optical power is proportional to the square of the electrical field strength, we have:

 \[
P(t) = P_s + P_{LO} + 2\sqrt{P_s P_{LO}} \cos(\omega_{IF} t + \phi_s + \phi_{LO}),
 \]

 \[
P_s = KA_s^2 \quad P_{LO} = KA_{LO}^2 \quad \omega_{IF} = \omega_0 - \omega_{LO}
 \]

 - if \(\omega_{IF} = 0 \), coherent system with homodyne detection
 - if \(\omega_{IF} \neq 0 \), coherent system with heterodyne detection
Coherent Systems. Homodyne detection

- When the local oscillator frequency equals to optical carrier frequency: \(w_{FI} = w_s - w_{OL} = 0 \)
- The photocurrent generated by the optical detector is proportional to the optical power (or optical intensity):

\[
I(t) = \Re(P_s + P_{LO}) + 2\Re\sqrt{P_sP_{LO}} \cos(\phi_s - \phi_{LO})
\]

\[
I(t) = 2\Re\sqrt{P_sP_{LO}} \cos(\phi_s - \phi_{LO})
\]

\((P_{LO} \gg P_s \Rightarrow P_{LO} + P_s \approx P_{LO} \), where DC can be eliminated)

Assuming: \(\phi_s = \phi_{LO} \), there is an improvement of SNR:

\[
\left(\frac{I_{\text{Homodyne Detect}}}{I_{\text{Direct Detect}}} \right)^2 = \left(\frac{2\Re\sqrt{P_sP_{LO}}}{\Re P_s} \right)^2 \Rightarrow \frac{4P_{LO}}{P_s} \gg 1
\]

Main disadvantage: Very sensitive to phase variations

- Accurate control of \(\phi_{LO} \) and \(\phi_s \) could be a solution unless both do not fluctuate
- Solution: Phase control so that the difference between \(\phi_{OL} \) and \(\phi_s \) remains constant (by using phase locked-loops)
Coherent Systems. Heterodyne detection

- Typically, the local oscillator frequency is chosen so that intermediate frequency values range from ~0.1 to 5 GHz.

\[
I(t) = \Re(P_s + P_{LO}) + 2\Re\sqrt{P_s P_{LO}} \cos(w_{IF} t + \phi_s - \phi_{LO})
\]

(following the same considerations we made in homodyne detection)

\[
I(t) = 2\Re\sqrt{P_s P_{LO}} \cos(w_{IF} t + \phi_s - \phi_{LO})
\]

- A SNR improvement is obtained with regard to IM/DD systems. However, this improvement (3dB) is lower compared to the one obtained in homodyne detection

Advantage: Simpler optical receivers

- Suitable for optical communications systems
- Unable to demodulate directly optical signal to baseband (it is required a previous demodulation from intermediate frequency to baseband in the electrical domain)
Coherent Systems. Heterodyne detection

- Typically, the local oscillator frequency is chosen so that intermediate frequency values range from ~0.1 to 5 GHz.

\[I(t) = R(P_s + P_{LO}) + 2R\sqrt{P_sP_{LO}} \cos(w_{IF}t + \phi_s - \phi_{LO}) \]

(following the same considerations we made in homodyne detection)

\[I(t) = 2R\sqrt{P_sP_{LO}} \cos(w_{IF}t + \phi_s - \phi_{LO}) \]

⇒ A SNR improvement is obtained with regard to IM/DD systems. However, this improvement (3dB) is lower compared to the one obtained in homodyne detection

\[SNR = \frac{\bar{I}^2}{\sigma^2} = \frac{2R^2P_sP_{LO}}{2e(RP_{LO} + I_d)\Delta f + \sigma_T^2} \]

I Photocurrent which depends on the detection process (homodyne or heterodyne)

The homodyne case (\(\phi_{OL} = \phi_s\)) produces an increase of 3dB with regard to the heterodyne case

If the power level \(P_{LO}\) dominates and can be controlled:

\(\sigma_s^2 \gg \sigma_T^2\) and when \(P_{OL} \gg \sigma_T^2/(2eR\Delta f)\). Also if \(I_d \ll RP_{OL}\)

\[SNR \approx \frac{RP_s}{e\Delta f} = \frac{\eta P_s}{h\nu\Delta f} \]
Coherent Systems. Heterodyne detection

Diagram of a coherent system based on heterodyne detection

- Incoming optical signal (modulated)
- Local Oscillator
- Photodetector
- Beam combiner
- Bandpass filter
- Lowpass filter
- subcarrier recovery (IF)
- Data out